\(\int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\) [524]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 119 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=-\frac {\sqrt {2} (A-B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \]

[Out]

-(A-B)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)*cos(d*x+c)^(1/2)
*sec(d*x+c)^(1/2)/d/a^(1/2)+2*A*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3040, 3063, 12, 2861, 211} \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}-\frac {\sqrt {2} (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^(3/2))/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

-((Sqrt[2]*(A - B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[C
os[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d)) + (2*A*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*
x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3040

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Sin[e + f*x])^m*((
c + d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int -\frac {a (A-B)}{2 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{a} \\ & = \frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}-\left ((A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {\left (2 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = -\frac {\sqrt {2} (A-B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 1.06 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.71 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \sin \left (\frac {1}{2} (c+d x)\right ) \left (10 B-(A-B) \sec (c+d x) \left (-\frac {5}{4} (1+4 \cos (c+d x)+\cos (2 (c+d x))) \csc ^4\left (\frac {1}{2} (c+d x)\right ) \left (1-\cos (c+d x)+\text {arctanh}\left (\sqrt {-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cos (c+d x) \sqrt {2-2 \sec (c+d x)}\right )+\frac {1}{2} \operatorname {Hypergeometric2F1}\left (2,\frac {5}{2},\frac {7}{2},-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x) \tan (c+d x)\right )\right )}{5 d \sqrt {a (1+\cos (c+d x))}} \]

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^(3/2))/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*Sin[(c + d*x)/2]*(10*B - (A - B)*Sec[c + d*x]*((-5*(1 + 4*Cos[c + d*x]
+ Cos[2*(c + d*x)])*Csc[(c + d*x)/2]^4*(1 - Cos[c + d*x] + ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*C
os[c + d*x]*Sqrt[2 - 2*Sec[c + d*x]]))/4 + (Hypergeometric2F1[2, 5/2, 7/2, -(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]
*Sin[c + d*x]*Tan[c + d*x])/2)))/(5*d*Sqrt[a*(1 + Cos[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(210\) vs. \(2(100)=200\).

Time = 10.18 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.77

method result size
parts \(\frac {A \left (\sec ^{\frac {3}{2}}\left (d x +c \right )\right ) \left (\cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+\sqrt {2}\, \sin \left (d x +c \right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \cos \left (d x +c \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{d \left (1+\cos \left (d x +c \right )\right ) a}-\frac {B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \cos \left (d x +c \right ) \left (\sec ^{\frac {3}{2}}\left (d x +c \right )\right ) \sqrt {2}}{d a}\) \(211\)
default \(\frac {\left (\sec ^{\frac {3}{2}}\left (d x +c \right )\right ) \left (A \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-B \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+A \sqrt {2}\, \sin \left (d x +c \right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, A \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, B \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \cos \left (d x +c \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{d \left (1+\cos \left (d x +c \right )\right ) a}\) \(221\)

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

A/d*sec(d*x+c)^(3/2)*(cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+2^(1/2)*sin(d
*x+c)+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c)))*cos(d*x+c)*(a*(1+cos(d*x+c)))^(1/2)/(1+
cos(d*x+c))*2^(1/2)/a-B/d*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))*(a*(1+cos(d*x+c)))^(
1/2)*cos(d*x+c)*sec(d*x+c)^(3/2)*2^(1/2)/a

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.92 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\frac {\sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right ) + {\left (A - B\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}} + \frac {2 \, \sqrt {a \cos \left (d x + c\right ) + a} A \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{a d \cos \left (d x + c\right ) + a d} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(sqrt(2)*((A - B)*a*cos(d*x + c) + (A - B)*a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt
(a)*sin(d*x + c)))/sqrt(a) + 2*sqrt(a*cos(d*x + c) + a)*A*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) +
 a*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {a \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(3/2)/sqrt(a*cos(d*x + c) + a), x)

Giac [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {a \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(3/2)/sqrt(a*cos(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(3/2))/(a + a*cos(c + d*x))^(1/2),x)

[Out]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(3/2))/(a + a*cos(c + d*x))^(1/2), x)